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Spectral flatness factor and ‘intermittency ’ in 
turbulence and in non-linear noise 

By D. A. KENNEDY AND S. CORRSIN 
Mechanics Department, The Johns Hopkins University 

(15 November 1960) 

The flatness factor P of the signal transmitted through a band-pass filter has been 
measured for the turbulence in a free shear layer and for a squared Gaussian 
noise. They both show flatness factor increasing with centre frequency f,. In  the 
turbulence, band-passed signals look intermittent and have larger B’ than the 
full signal, but in the squared noise, band-passed signals all have smaller P than 
the full signal although they look more intermittent. 

It is shown analytically that the derivative of a smoothed, squared Gaussian 
noise may have flatness factor either greater or less than the undifferentiated 
signal. 

Batchelor & Townsend (1949) and Sandborn (1959) have shown experimentally 
that the fine structure of turbulence in grid flow, wakes and boundary layers 
tends to be intermittent (see also Batchelor 1949). The former experiments used 
essentially high-pass filters (the effect of successive differentiations). The latter 
used band-pass filters. A possible measure of intermittency in an intermittent 
variable b is the amount by which the flatness factor 

F sz F/(P)2 (1) 
(also called kurtosis) exceeds the value 3-0 that is appropriate to a variable with 
Gaussian (or ‘normal’) probability density. Of course, this measure is useful 
only if the ‘on’ part of the intermittent variable is roughly Gaussian. 

For the turbulence, qualitative explanation in terms of strong localization of 
vorticity into sheets and/or lines has been offered convincingly by Batchelor & 
Townsend. This vortex stretching is a result of the non-linear, convective accelera- 
tion term in the Navier-Stokes equations, so it seemed relevant to see whether 
other (simpler) non-linear random systems show similar spectral kurtosis pro- 
perties. No analogy is implied between the squared Gaussian noise and turbulence. 

Turbulent shear layer 

A constant current hot-wire anemometer circuit was used. The hot-wire sensing 
element was mounted 12 in. downstream of the exit of an 18 in. square duct, on 
the extrapolation line of the wall (figure 1). The inside duct boundary layer was 
turbulent and about 8 in. thick. The free-stream velocity was 25 ft./sec; the mean 
velocity at  the wire was about half of that. No general intermittency at  the wire 
was detectable on an oscilloscope. The flatness factor of the full turbulence signal 
(component along the flow) was 3.0. 
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Figure 2 is a block diagram of the measuring devices. The variable band-pass 
filter had a half-power point band width equal to half the centre frequency: 
Af/fc x 0.5. Sandborn shows typical oscillograms of the full turbulence signal 
and a filtered turbulence signal which shows some intermittency. 

The flatness factors measured for a range off, is included in figure 4. These 
results are in qualitative agreement with those of Sandborn; the band-passed 
signal has flatness factor above 3.0 for all f,, and increases toward larger f,. 
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FIGURE 1. Experimental arrangement. 
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FIGURE 2. Block diagram of the measuring devices. 

Gaussian noise 

An electronic noise generator (H. H. Scott, type 8ll-A, ASA Band) was used as 
source of random signal with Gaussian probability density function. This was 
put in place of the hot-wire and its amplifier in the circuit of figure 2. As indicated 
in figure 4, this had a band-passed flatness factor close to 3.0. Neither of the 
corresponding oscillograms in figure 3, plate 1, looks particularly intermittent. 

Squared Gaussian noise 

As a typical simple non-linear process we chose an instantaneous squaring device. 
With Gaussian input, the output is a non-Gaussian random signal. The output of 
the noise generator was passed through an approximate squaring circuit and the 
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d.c. component was removed with a high-pass filter (figure 5), cutting off below 

The total signal does not look especially intermittent (figure 3), although its 
flatness factor is 9.1." In  contrast, the band-passed signals do have a more inter- 
mittent appearance (figure 3), but coupled with appreciably smaller flatness 
factors (figure 4). 
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FIGURE 4. Flatness factors. 0, Free jet turbulence; 0, non-Gaussian noise; 
v, Gaussian noise; Af/fc = 0.5 for all cases. 
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* The theoretical value for a squared Gaussian with d.c. removed is 15. The value 9 
corresponds theoretically to the power 1.7. 
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FIGURE 3. Oscillograms of ‘noise’. 
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These results differ from the turbulence case in the two following ways. 
(1) The band-passed signals here have smaller F than the total signal; for 

turbulence this is reversed. 
( 2 )  Here the signal with larger flatness factor (i.e. the total signal) is less inter- 

mittent in appearance; for turbulence this is reversed. 
A point of similarity with the turbulence signal is that F increases with increasing 
fc in both. 

It seems desirable to pursue this sort of measurement through other classes of 
non-linear operations, especially non-linear differential equations with random 
forcing functions. It may turn out that the response will have flatness factor 
near 3 (as in some turbulent velocities) simply because it is in a sense a sum. This 
brings into play the effects that give us Central Limit Theorems in probability 
theory. In  such a case we might then expect departure from Gaussian properties 
in the derivatives of the solution, hence in the higher frequencies. There seems 
to be as yet no corresponding qualitative argument to rationalize the fact that 
narrow-band signals in the lower frequency range (of turbulence) also have flatness 
factor larger than the full signal. 

Finally, all such measurements should be made with a range of relative band 
widths extending to much smaller values than used so far. 

A related exercise 
Suppose O(x) is a stationary ‘Gaussian process’ in the sense that the values 

chosen at  n different points (1 < n = a) are jointly Gaussian. As we have seen, 
[02(x) - 821 is a non-Gaussian random variable. 

There is both experimental (Iribe 1949) and theoretical (Kac & Siegert 1947) 
evidence that the averaging (‘ smoothing ’) of a non-Gaussian variable tends to 
make it more nearly Gaussian. As indicated above, this is doubtless related to the 
conditions for Central Limit Theorems to be applicable. 

Define the smoothed non-Gaussian variable 

For f -+ 0, it is obvious that 

For f -+ 00, we expect R&x) to approach a Gaussian process (Kac & Siegert 1947). - -  
Focusing attention on the flatness factor, FR = R$/(Rf)2, we see that 

whereas we expect 

lim FR = 15, 
5+0 

lim FR = 3. 
5+ * 

The statistical properties of R&) are functionals of the properties of 02(x) ,  so 
general results are difficult to obtain. However, one particular function of R5(x) 
is not only relevant here but also accessible : 
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With the condition that 8(x) is Gaussian, computation yields 

independent of 6. This shows that for small enough 6,  the differentiated variable 
R;(x) has smaller F than the undifferentiated one El($), whereas for large 6 it has 
larger F. The former situation corresponds to the measurements on squared 
Gaussian noise with no smoothing (6  = 0). The latter result is qualitatively like 
that observed for turbulent velocity. We recall that differentiation is like a high- 
pass filter. 

This work was supported by the National Science Foundation under Grant 
G-4542. 
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